DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Program Code: Department:

M. Tech. (Structural Engineering) Civil Engineering 20

CE

L

Teaching Scheme				C Hou	onta urs/W	ct eek	Ex: Dura	am ation	R	elativ	/e We	ight (%	6)	
S. No.	Subject Code	Course Title	Subject Area	Credits	L	т	Ρ	Theory	Practical	CWS	PRS	MTE	ЕТЕ	PRE
		Sem	ester-I(Au	utumr	ו)									
1.	CEN-541	Matrix Structural Analysis	PCC	4	3	-	2	3	-	15	25	20	40	-
2.	CEN-542	Continuum Mechanics	PCC	4	3	1	-	3	-	25	-	25	50	-
3.	CEN-543	Advanced Concrete Design	PCC	4	3	-	2	3	-	15	25	20	40	-
4.	CEN-544	Structural Dynamics	PCC	4	3	1	-	3	-	25	-	25	50	-
5.		Programme Elective-1	PEC	4	-	-	-	-	-	-	-	-	-	-
		Total		20										
		Sem	ester-II (S	pring)									
1.	CEN-545	Finite Element Analysis	PCC	4	3	-	2	3	-	15	25	20	40	-
2.	CEN-700	Seminar	SEM	2	0	0	2	-	-	-	-	-	100	-
3.		Programme Elective-II	PEC	4	-	-	-	-	-	-	-	-	-	-
4.		Programme Elective-III	PEC	4	-	-	-	-	-	-	-	-	-	-
5.		Programme Elective-IV	PEC	4	-	-	-	-	-	-	-	-	-	-
		Total		18										

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Program Code:20M. Tech. (Structural Engineering)Department:CECivil EngineeringYear:II

Teaching Scheme				Contact Hours/Week		Exam k Duration		Relative Weight (%			6)			
S. No.	Subject Code	Course Title	Subject Area	Credits	L	т	Ρ	Theory	Practical	CWS	PRS	MTE	ЕТЕ	PRE
	Semester- I (Autumn)													
1.	CEN- 701A	Dissertation Stage–I (to be continued next semester)	DIS	12	-	-	-	-	-	-	-	-	100	-
		Total		12										
Not	e: Students	can take 1 or 2 audit courses as advised	by the sup	ervise	or, if ı	requi	red.			•				
	Semester-II (Spring)													
1.	CEN- 701B	Dissertation Stage–II (contd. From III semester)	DIS	18	-	-	-	-	-	-	-	-	100	-
		Total		18										

Summary				
Semester	1	2	3	4
Semester-wise Total Credits	20	18	12	18
Total Credits	68			

Teaching Scheme				Contact Exam Hours/Week Duration Relative Weight					ght (%)				
S. No.	Subject Code	Course Title	Subject Area	Credits	L	т	Ρ	Theory	Practical	CWS	PRS	MTE	ETE	PRE
1.	CEN-521	Advanced Numerical Analysis (Autumn)	PEC	4	3	-	2	3	-	15	25	20	40	-
2.	CEN-641	Behaviour & Design of Steel Structures (Autumn)	PEC	4	3	-	2	3	-	15	25	20	40	-
3.	CEN-642	Analysis and Design of Bridges	PEC	4	3	-	2	3	-	15	25	20	40	-
4.	CEN-643	Analysis and Design of High rise Buildings	PEC	4	3	-	2	3	-	15	25	20	40	-
5.	CEN-644	Analysis and Design of Plates and Shells	PEC	4	3	-	2	3	-	15	25	20	40	-
6.	CEN-645	Mechanics of Composites	PEC	4	3	1	-	3	-	25	-	25	50	-
7.	CEN-646	Engineering Design Optimization and Reliability	PEC	4	3	-	2	3	-	15	25	20	40	-
8.	CEN-647	Condition Assessment and Retrofitting of Structures	PEC	4	3	-	2	3	-	15	25	20	40	-
9.	CEN-648	Concrete Technology	PEC	4	3	-	2	3	-	15	25	20	40	-
10.	CEN-649	Fracture Mechanics in Quasi-Brittle Materials	PEC	4	3	1	-	3	-	25	-	25	50	-
11.	CEN-650	Design of Bridge Sub-structure	PEC	4	3	-	2	3	-	15	25	20	40	-
12.	CEN-651	Wind Engineering	PEC	4	3	-	2	3	-	15	25	20	40	-

Program Elective Courses (Structural Engineering)

NAME OF DEPTT/CENTREDepartment of Civil Engineering1. Subject Code : CEN-541Course Title : Matrix Structural Analysis2. Contact Hours : L: 3T: 03. Examination Duration (Hrs) :Theory : 3Practical : 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 046. Semester: Autumn7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective: To equip students with different methods of linear and non-linear analysis using matrix approach and expose them to write small utility programs and use of commercial packages for computer aided analysis of common 2D and 3D structures

10. Details of Course:

S.	Contents	Contact
No.		Hours
1	Basic methods of analysis, different indeterminacies, stiffness and flexibility	04
	approach	
2	Flexibility method using member approach	06
3	Stiffness matrix for prismatic, non-prismatic and curved members, shear	08
	deformations	
4	Linear analysis of different 2D and 3D structures	08
5	Techniques for enhancing computing power: solution algorithm, substructuring	04
6	Non linear analysis: types and different techniques, convergence criteria	08
7	Development of codes and introduction to different software packages	04
	Total	42

S.	Name of Authors/Books/Publisher	Year of
No.		Publication/
		Reprint
1	William Weaver Jr & James M Gere, "Matrix Analysis of Framed Structures", 2 nd Ed., CBS Publishers, New Delhi	1986
2	Madhu B Kanchi, "Matrix Methods of Structural Analysis", 2 nd Ed., Wiley	1993
	Eastern Ltd.	
3	Majeed K I, "Non Linear Structure Analysis", Butterworth Ltd. London.	1973

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-542 Course Title : Continuum Mechanics
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS : 25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To impart to students the basic knowledge in theory of vibrations and behaviour of soils under dynamic loads so that foundations for various types of machines could be designed.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Vector and Tensors Algebra, Lineariziation and Directional Derivatives,	
	Stress and Equilibrium, Analysis for Stresses, Translational and Rotational	
	Equilibrium, Principal Stresses and Principal Planes in 3D, Stress Invariants,	
	Cauchy and Kirchhoff Stress Tensor, Deviatoric and Volumetric	
	Components, Work Conjugancy, Octahedral and von-Mises stresses.	
2.	Kinematics, Linearized Kinematics, Strain Quadric of Cauchy, Principal	
	Strains, Invariants, Equations of Compatibility, Finite Deformation, Material	
	(Lagrangian) and Spatial (Eulerian) Descriptions, Deformation Gradient,	
	Polar Decomposition, Volume change, Distortional Component of	
	Deformation Gradient, Area Change.	
3.	Equations of Elasticity, Hooke's Law, Generalized Hooke's Law,	
	Anisotropic, Orthotropic and Isotropic Elasticity Tensor, Plane Stress and	
	Strain Problems, Airy Stress Functions for Two-Dimensional Problems, Airy	
	Stress Function in Polar Coordinates, Isotropic Hyper elasticity, Three-	
	Dimensional Elasticity.	
4.	Elasto-Plastic Behavior of Material, Elasto-Plastic Formulations, Material	
	Yield Criteria- von Mises, Tresca, Mohr-coulomb, Ducker-Pager, Isotropic	
	and Kinematic Hardening, Normality Principle, Plastic Flow Rule, Plastic	
	Potential, Elasto-Plastic Stress-Strain Relations, Prandtl-Rauss Equations,	
	Levy-Mises Relations, Hardening Modulus, Generalized Elasto-Plastic	
	Stress-Strain Relations	
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	Finite element analysis in Geotechnical Engineering theory, By David M Potts	1999
	and Lidija Zdravkovic, Thomas Telford	
2.	Mechanics of Materials and Interfaces: The Disturbed State Concept, By C	2000
	S Desai, CRC Press LLC	
3.	Mechanics of Geomaterial Interfaces, By A.P.S. Selvadurai, M.J. Boulon,	1995
	Elsevier	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-543 Course Title : Advanced Concrete Design
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 04 6. Semester: Autumn 7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective: To give a consistent and sound theoretical background to the force and stress distributions in reinforced and pre-stressed concrete. To introduce the concepts of yield line analysis, strut-tie models and other state of art analysis techniques and to connect these with the extant design ideologies in the building codes. To study advanced concepts of creep/rheology & crack widths in reinforced and prestressed concrete and creating numerical models of these. To develop a clear theoretical understanding of the underlying reasons behind codal details as ductile detailing, reinforcement placement etc.

10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Plastic Section Theory for Reinforced Concrete including interaction of flexure-	5
	Shear-Axial effects	
2.	Upper bound and lower bound plastic theorems	2
3.	Application of plastic analysis to frames – instantaneous centre of rotations	4
4.	Introduction to Pushover Analysis	3
5.	Introduction to Strut-Tie Models	2
6.	Strut-Tie Models for Deep Beams, Beam-Column Joints& Shear walls	5
7.	Introduction to Yield line analysis and application for slabs, raft foundations etc.	4
8.	Introduction to Pre-stressed concrete and behaviour for simple elements	8
9.	Modelling of creep/shrinkage and long term effects for RCC and prestressed	5
	concrete	
10.	Calculation of crack widths and crack control designs	4
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	Reinforced Concrete: Mechanics and Design, 6 th Ed., McGregor & White	2011
2.	Reinforced Concrete: A Fundamental Approach, 6 th Ed., Edward Nawy	2008
3.	Design of Prestressed Concrete, 2 nd Ed., Arthur H. Nilson	1987
4.	Darwin & Dolan, "Design of Concrete Structures", 14 th Ed., Nilson,	2009
5.	Prestressed Concrete: A Fundamental Approach, 5 th Ed., Edward Nawy	2005
6.	J Schlaich, K Schaefer, and M. Jennewin, "Toward a Consistent Design of	1987
	Structural Concrete", PCI Journal V. 32, No. 2, pp. 72-150.	
7.	Kennedy & Goodchild, "Practical Yield Line Design", The Concrete Centre,	2004
	TCC/03/3.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-544 Course Title : Structural Dynamics
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS : 25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Autumn7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective: To understand the response of structures to earthquakes requires study of structural dynamics. Therefore, Single Dynamic Degree of Freedom Systems are first introduced, then two and three DOF system are covered. Finally the earthquake effects on structures are covered.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Overview of Structural Dynamics, Single Degree of Freedom Systems - Analysis	3
	of Free Vibrations - undamped and damped systems, estimation of damping by	
	logarithmic decrement method.	
2.	Formulation of equation of motion for generalized SDOF dynamic problems using	3
	virtual work method.	
3.	Response of SDOFS systems to Harmonic, Periodic, Impulse Loads	3
4.	Formulation of equation of motion for two/three DOF systems. Finding mode	12
	shapes and frequencies by solving the determinantal equation, and iterative	
	techniques. Use of sweeping matrices for obtaining higher modes. Proof of	
	Convergence. Modal superposition and Response Spectrum Methods.	
5.	Response of single and multiple DOFS systems to Earthquake Loading using Time-	6
	Stepping Methods based on Forward Cauchy Euler, Backward Cauchy Euler and	
	Trapezoidal Rule. Accuracy, stability and algorithmic dampingin step-by-step	
	methods.	
6.	Earthquake response analysis of Multi-DOF systems subjected to earthquake	6
	ground motion. Concept of modal mass and mode participation factors, etc.	
7.	Newark & Hall's linear and inelastic response spectra for earthquakes	6
6.	Introduction to IS code provisions regarding earthquake.	3
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	Ray W. Clough & Penzien, "Dynamics of Structures", Mc Graw Hill.	1993
2.	Anil Chopra, "Dynamics of Structures ", Mc Graw Hill.	2001

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-545 Course Title : Finite Element Analysis
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weightage : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the concept of domain discretisation and a variational framework of the equations of mechanics. Application of these methodologies to a wide range of engineering problems and connection with the laws of continua.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Basic Concepts, Discretization; Displacement, Force and Hybrid Models	02
2.	Interpolation Functions for General Element Formulations: Compatibility and	08
	Completeness, Polynomial Forms: One Dimensional Elements, Geometric Isotropy,	
	Triangular Elements, Rectangular Elements, Three Dimensional Elements,	
	Isoperimetric Formulations, Axisymmetric Elements; Numerical Integration.	
3.	Applications in Solid Mechanics: Plane Stress/Strain: FE Formulation: CST, LST;	08
	Stiffness Matrix, Load Matrix Formation Rectangular Element Isoparametric	
	Formulation: Plate Elements and Shell Elements, Three Dimensional Elements FE	
	Formulation: Axisymmetric Stress Analysis, Torsion, Interface Elements, Infinite	
	Elements	
4.	Application in Structural Dynamics and Vibrations: Mass (Consistent and Diagonal)	06
	and Damping Matrices; Modal Analysis, Time History Analysis, Explicit Direct	
	Integration/ Implicit Direct Integration and Mixed Methods.	
5.	Introduction to Nonlinear Problems: Geometric and Material (Elasto-plastic),	08
	Solution Methods: Newton Ralphson Method, Modified Newton-Ralphson Method,	
	Arc Method, A Problem of Geometric Nonlinearity.	
6.	Stationary Principles, Rayleigh Ritz Method and Interpolation; Weighted Residual	06
	Methods and Variational Methods, Numerical Errors and Convergence	
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1.	David Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill	2005
2.	R. D. Cook, Malkus and Plesha, "Concepts and Applications of Finite	1989
	Element Analysis", 3 rd Ed., John Wiley.	
3.	T. J. R. Hughes, "The Finite Element Method : Linear Static and Dynamic	1987
	Analysis", Prentice Hall.	
4.	Klaus Juergen Bathe, "Finite Element Procedures", Prentice Hall of India.	2003
5.	O. C. Zienkiewicz., R. L. Taylor & J. Z. Zhu., "The Finite Element Method Its	2007
	Basis & Fundamentals", Elsivier Publications.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-641 Course Title : Behaviour and Design of Steel Structures

2. Contact Hours : L: 3 T: 0 P: 2

3. Examination Duration (Hrs): Theory: 3 Practical: 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 046. Semester: Autumn7. Subject Area : PEC
- 8. Pre-requisite: Nil

9. Objective: To introduce basic concepts of stability of structures and illustrate it's application in thin walled structures along with advanced topics in analysis and design of steel structures

10. Details of Course:

S.	Contents	Contact
No.		Hours
1	Concepts of Stability, Introduction to Buckling Behaviour of Columns	03
2	Stability of Beam-Columns and Frames	03
3	Lateral Instability of Beams	03
4	Local Buckling and Post Buckling Behaviour of Plates	03
5	Behaviour and Design of Cold Formed Thin Walled Structures Subjected to Flexure	10
	and Compression	
6	Plastic Analysis and Design of Steel Structures, LRFD approach	04
7	Advanced Topics in Bolted and Welded Connections	05
8	Behaviour of Steel Concrete Composite Construction and Introduction to Brittle	03
	Fracture and Fatigue.	
9	Design of Steel Truss Bridges	08
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1.	S.P. Timoshenko and J.M. Gere, "Theory of Elastic Stability" McGraw-Hill.	1963
2	A.S. Arya and J.L. Ajmani, "Design of Steel Structures" Nem Chand & Bros.	2000
3.	N. Subramanian, "Design of Steel Structures", Oxford University Press.	2008
4.	M.L. Gambhir, "Stability Analysis and Design of Structures", Springer.	2005

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-642 Course Title : Analysis and Design of Bridges
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce bridge deck behavior with the help of classical and numerical analysis approaches and impart knowledge needed for design of R.C. and pre-stressed concrete bridges.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1	Structural Forms and Design Loads for Bridges	03
2	Effective Width Concept and Load Distribution in Multi-Beam Bridges	05
3	Grillage Analogy	03
4	Design of R.C. and Pre-Stressed Concrete Slab Bridges	06
5	Design of R.C. and Pre-Stressed Concrete Girder Bridges	09
6	Behaviour of Box-Girder Bridges, Introduction to Arch Bridges, Suspension and	09
	Cable Stayed Bridges	
7	Different Types of Bearings and Design of Elastomeric Bearings	03
8	Introduction to Secondary Effects, Temperature, Shrinkage, Creep. Construction	04
	Techniques and Effects of Construction Sequence on Design.	
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1	N. Rajagopalan, "Bridge Superstructure", Narosa Publishing House.	2010
2.	D.J. Victor, "Essentials of Bridge Engineering" Oxford & IBH Publishing.	2001
3.	Code of Practice for Concrete Road Bridges - IRC:112-2011, Indian Road	2011
	Congress.	
4.	Standard Specifications and code of Practice for Bridges, Section II- Loads	2010
	and Stresses - IRC:6-2010, Indian Road Congress.	
5.	E.C. Hambly, "Bridge Deck Behaviour", Chapman and Hall, London.	1976

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-643 Course Title : Analysis and Design of High-Rise Buildings
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the analysis and design of tall buildings subjected to different loading conditions and detailing of various components.

10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Structural systems for multi-storey buildings, gravity and lateral loads on buildings,	6
	analysis of multi-storey frames. Behaviour of framed tube, tube-in-tube systems,	
	and bundled tube systems	
2.	Importance of symmetry and regularity in plan, and regularity in elevation.	6
	Analysis for torsion in buildings	
3.	Design of buildings with shear walls and coupled shear walls	6
4.	Design and detailing of various members and beam-column joints for ductility. The	6
	capacity design principle. Performance based design philosophy	
5.	Design of floor slabs, raft and pile foundations	9
6.	Application of MS-Excel, ETABS and SAFE software	9
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	U.H.Varyani, "Structural Design of Multi-storeyed Buildings", 2 nd Ed., South	2002
	Asian Publishers, New Delhi.	
2.	V.L. Shah & S.R.Karve, "Illustrated Design of Reinforced Concrete	2013
	Buildings", (GF+3storeyed), Structures Publications, Pune.	
3.	Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications.	1976
4.	Bungale S. Taranath, "Structural Analysis and Design of Tall Buildings",	1988
	Mc-Graw Hill.	
5.	Bryan S. Smith and Alex Coull, "Tall Building Structures", Wiley India.	1991
6.	Wolfgang Schueller, "High Rise Building Structures", Wiley.	1986

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-644 Course Title : Analysis and Design of Plates and Shells

2. Contact Hours : L: 3 T: 0 P: 2

3. Examination Duration (Hrs): Theory: 3 Practical: 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective: To analyze and design of plate and shell structures
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1	Classification of Plates	01
2	Governing Equations	03
3	Boundary Conditions	01
4	Analysis of Rectangular and Circular Plates	08
5	Grid Floor as Orthotropic Plate	03
	Buckling of Plates	01
	Design Criteria and Code Specification	02
	Classification of Shells	01
6	Membrane Theory for Shells of Revolution with Axisymmetric and Non-	04
	Axisymmetric Loadings	
7	Bending Analysis of Shells of Revolution for Axisymmetric Loadings	02
8	Membrane and Bending Theories of Cylindrical Shells	03
9	Theory of Edge Beams	02
10	Doubly Curved Shells	02
11	Membrane Theory and Design of Hyperbolic Shells	02
12	Buckling of Shells	01
13	Design Applications, Analysis and Design of Folded plates, Cooling towers, Silos	04
	and Bunkers,	
14	Codal Specifications, Practical Considerations, Computer Applications	02
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	S.P. Timoshenko and S. Woinowsky-Krieger, "Theory of Plates and Shells", 5 th Ed., McGraw- Hill.	1959
2.	J.N. Reddy, "Theory and Analysis of Elastic Plates", 2 nd Ed., Taylor & Francis.	2006
3.	B.K. Chatterjee, "Theory and Design of Concrete Shells", 3 rd Ed., Chapman and Hall.	1988
4.	V.S. Kelker and R.T. Sewell, "Fundamentals of the Analysis and Design of Shell Structures", 1 st Ed., Prentice Hall.	1987
5.	R. Szilard, "Theory and Analysis of Plates : Classical and Numerical Methods, 1 st Ed., Prentice Hall.	1973

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-645 Course Title : Mechanics of Composites

2. Contact Hours : L: 3 T: 1 P: 0

3. Examination Duration (Hrs) : Theory : 3 Practical : 0

4. Relative Weight : CWS : 25 PRS: 0 MTE: 25 ETE: 50 PRE: 0

- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil

9. Objective: To analyze and design Laminated composite structures

10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Introduction-Classification and Characteristics of Composite Materials, Basic	02
	Terminology, Uses of Fibrous Composites	
2.	Behaviour of Lamina Stress-Strain Relationship for Anisotropic, Orthotropic and	04
	Isotropic Material.	
3.	. Transformation of Elastic Constants	02
4.	Failure Criteria for an Orthotropic Lamina	02
5.	Introduction to Micromechanics: Laws of Mixture	03
6.	Behavior of Laminate: Classical Lamination Theory, Stress-Strain Relationship for	06
	a Laminate, Extensional, Bending and Coupling Stiffness, Different Configurations	
	and Corresponding Stiffness	
7.	Strength of Laminates	02
8.	Inter-laminar Stresses	02
9.	Shear Deformation Theories	02
10.	Behaviour and Analysis of Laminated Plates Subjected to Bending, Buckling and	07
	Vibrations	
11.	Thin Walled Laminated Structures and Sandwich Constructions	03
12.	Behaviour of laminated composite Joints	03
13.	Examples on Practical Applications	04
	Total	42

S.	Name of Authors/Books/Publishers	Year of Publication/
110.		Reprint
1.	R.M. Jones, "Mechanics of Composite Materials", 2 nd Ed., Taylor & Francis.	1998
2.	I.M. Daniel & Ori Ishai, "Engineering Mechanics of Composite Materials", 2 nd	2013
	Ed., Oxford University Press.	
3.	Autar K. Kaw, "Mechanics of Composite Materials", 2 nd Ed., CRC Press.	2005
4.	R.F. Gibson, "Principles of Composite Mechanics", 2 nd Ed., CRC Press.	2007
5.	B.D. Agarwal, L.J. Broutman, L.J. Broutman, "Analysis and Performance of	1990
	Fibre Composites", 2 nd Ed., John Wiley.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-646 Course Title : Engineering Design Optimization and Reliability
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil

9. Objective: This course is designed to introduce graduate students to concepts and applications of structural reliability and design optimization. Upon completion of this course, students will be able to: (a) Compute first- and second-order estimates of failure probabilities of engineered systems; (b) Compute sensitivities of failure probabilities to assumed parameter values; (c) Measure the relative importance of the random variables associated with a system; (d) Update reliability estimates based on new observational data; (e) Identify the relative advantages and disadvantages of various analytical reliability methods, as well as Monte Carlo simulation; (f) Use reliability tools to calibrate simplified building codes

10. Details of Course:

S.	Contents	Contact
No.		Hours
	Introduction to Design Optimization; Optimal Design Problem Formulation;	3
	Graphical Optimization and Basic Concepts	
	Optimum Design Concepts: Optimality Conditions; Optimal Design with MATLAB	5
	Numerical Methods for Unconstrained Design Optimization; Numerical Methods	8
	for Constrained Design Optimization; Practical Applications of Optimization	
	Genetic Algorithm for Optimum Design; Multi-objective Optimum Design	8
	Concepts and Methods	
	Fundamentals of probability theory; Common probabilistic models	2
	General component reliability; First-order second-moment methods; First and	9
	Second-order reliability method	
	Importance measures and parameter uncertainty; Sampling techniques; Surrogate	4
	Modelling	
	Development of reliability based design codes; System reliability	3
		40
	lotal	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Jasbir S. Arora, "Introduction to Optimum Design", 3 rd Ed., Academic Press.	2012
2.	Achintya Halder and Sankaran Mahadevan, "Probability, Reliability, and	2000
	Statistical Methods in Engineering Design", John Wiley.	
3.	O. Ditlevsen, and H. O. Madsen, "Structural Reliability Methods", Internet	2007
	Edition 2.3.7, John Wiley. http://www.web.mek.dtu.dk/staff/od/books.htm	
4.	A.H.S. Ang and W. H. Tang, "Probability Concepts in Engineering Planning	1975
	and Design", Vol. I : Basic Principles, Wiley.	
5.	R. E. Melchers, "Structural Reliability Analysis and Prediction", 2 nd Ed.,	1999
	Wiley.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-647 Course Title : Condition Assessment and Retrofitting of Structures

2. Contact Hours : L: 3 T: 0 P: 2

3. Examination Duration (Hrs): Theory: 3 Practical: 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil

9. Objective: To introduce the application of different techniques for evaluation and retrofitting of buildings

10. Details of Course:

S.	Contents	Contact
No.		Hours
1	Deterioration of Concrete Buildings: Embedded Metal Corrosion, Disintegration	08
	Mechanisms, Moisture Effects, Thermal Effects, Structural Effects, Faulty	
	Construction	
2	Evaluation of Concrete Buildings: Visual Investigation, Destructive Testing	08
	Systems, Non-Destructive Testing Techniques, Semi-Destructive Testing	
	Techniques, Chemical Testing.	
3	Surface Repair & Retrofitting Techniques: Strategy & Design, Selection of Repair	08
	Materials, Surface Preparation, Bonding repair Materials to Existing concrete,	
	Placement Methods,	
4	Epoxy Bonded Replacement Concrete, Preplaced Aggregate Concrete, Shotcrete/	06
	Gunite, Grouting, Injection Grouting, Micro concrete.	
5	Strengthening Techniques: Strengthening Techniques, Beam Shear Capacity	08
	Strengthening, Shear Transfer Strengthening between Members, Column	
	Strengthening, Flexural Strengthening, and Crack Stabilization	
6		0.4
6	Guidelines for Seismic Rehabilitation of Existing Buildings, Seismic Vulnerability	04
	and Strategies for Seismic Retrofit.	
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1	Emmons, P.H., "Concrete Repair and Maintenance", Galgotia Publication.	2001
2	Bungey, S., Lillard, G. and Grantham, M.G., "Testing of Concrete in	2001
	Structures", Taylor and Francis.	
3	Malhotra, V.M. and Carino, N.J., "Handbook on Non-destructive Testing of	2004
	Concrete", CRC Press.	
4	Bohni, H., "Corrosion in Concrete Structures", CRC Press.	2005
5	FEMA 273; NEHRP Guidelines for the Seismic Rehabilitation of Buildings.	1997
6	ATC- 40: Seismic Evaluation and Retrofit of Concrete Buildings, Vol. 1 & 2.	1997
7	M.J.N., Seible, F. and Calvi, G.M., "Seismic Design and Retrofit of Bridges	1996
	by Priestley", John Wiley.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-648 Course Title : Concrete Technology

- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs) : **Theory : 3 Practical : 0**
- 4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective : The objective of this course is to provide detailed knowledge about concrete and its composition.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Ingredients of Concrete: Review of Cements including Blended Cements,	8
	Manufacture, Chemical Composition, Aggregates: Review of Types; Elementary	
	Mineralogy and Petrology; Sampling and Testing; Effects on Properties of	
	Concretes, Chemical and Physical Processes of Hydration.	
	Mineral Admixtures: Pulverized Fly Ash, Ground Granulated Blast Furnace Slag	
	and Silica Fume; Chemical Composition, Physical Characteristics, Chemical and	
	Physical Processes of Hydration and Interaction, Effects on Properties of Concretes.	
2.	Admixtures: Review of Types and Classification, Chemical Composition, Effects on	2
	Properties of Concretes.	
3.	Fresh-Concrete: Rheology of Mortars and Concretes; Workability, Segregation and	8
	Bleeding, Theory and Principles governing the correct transportation, Placing,	
	Compaction and Curing of Concrete. Plastic Settlement and Plastic	
	Shrinkage, Exothermic Characteristics: Early Age Thermal Movements, Strength	
	Development, Maturity, Accelerated Curing, Hot and Cold Weather Concreting.	
4.	Properties of Hardened Concrete: Strength, Deformation under	5
	Load, Elasticity, Creep, Drying Shrinkage and other volume Changes. Thermal	
	Properties.	
5.	Durability of Concrete and Concrete Construction: Durability Concept,Pore	7
	Structure and Transport Processes, Reinforcement Corrosion, Fire Resistance, Frost	
	Damage, Sulfate Attack, Alkali Silica Reaction, Methods of Providing Durable	
	Concrete.	
6.	Concrete Mix Design: The process of Mix Selection, Factors governing the	6
	selection of Mix Proportions, Combining Aggregates to obtain Specified Grading,	
	Different Methods of Mix Design, Concepts of Statistical Quality Control of	
	Concrete Construction.	
7.	Special Concretes: Lightweight Concrete, No-Fines Concrete, High Performance	6
	Concrete, High Density and Radiation-Shielding Concrete, Polymer Concrete, Fibre-	
	Reinforced Concrete, Self Compacting Concrete, Roller Compacted Concrete, High	
	Volume Fly Ash Concrete, Ready Mixed Concrete.	
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	A.M. Neville and J.J. Brooks, "Concrete Technology", 1 st Ed.	2002
2.	P.K. Mehta and Paulo J.M. Monteiro, "Concrete: Microstructure, Properties and Materials", 3 rd Ed.	2006

NAME OF DEPTT/CENTRE :

1. Subject Code : CEN-649 Course Title : Fracture Mechanics in Quasi-brittle Materials

Department of Civil Engineering

- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS : 25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the mechanics of fracture and their applications to anisotropic and heterogeneous quasi-brittle materials
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Basic concepts: Basic modes of fracture, Elasticity solution to infinite and finite plate with a crack: Westergaard complex function and Muskhelishvili potential, Effect of free boundary, 3-Dimensional crack problems	5
2	Linear elastic fracture mechanics(LEFM) based design concepts: Energy release rate, Griffith's energy balance criterion, Crack resistance, Stress intensity factors, Small scale yielding, plastic zone corrections	6
3	Elastic plastic fracture mechanics (EPFM) based design concepts: J-integral, Crack tip opening displacement, Crack growth resistance concepts	3
4	Introduction to fracture mechanics in Quasi-brittle material: Trends in Fracture of quasi-brittle materials, Fracture process zone, Size effect: Sources, experimental evidence, statistical and energetic size effect	6
5	Non-linear fracture mechanics: Fictitious and Effective elastic crack approach, Nonlocal continuum modelling of damage localization	4
6	Application of fracture mechanics to concrete structures: Size effect on nominal strength, Tension of reinforced concrete members, Bending of reinforced concrete members, Shear in reinforced concrete beams, Fibre-reinforced concrete, Bi-material interface, Concrete dams	8
7	Fatigue and fracture in concrete: Introduction, Conventional methods of fatigue analysis, Fatigue crack propagation approach, Crack propagation models for constant and variable amplitude loading, Overload effect, Crack closure	5
8	Finite elements in fracture mechanics: Modelling of crack tip singularity, Approaches for the extraction of stress intensity factor, Discrete and smeared crack approach, Application to problems of LEFM and EPFM	5
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1	Broek, D., Springer, "Elementary Engineering Fracture Mechanics", 3rd Ed.,.	1982
2	Kumar, P., "Elements of Fracture Mechanics", Wheeler Publishing.	1999
3	Anderson, T.L., "Fracture Mechanics: Fundamentals and Applications", 3rd Ed.,	2005
	CRC Press.	
4	Shukla, A., "Practical Fracture Mechanics in Design", 2nd Ed., CRC Press.	1989
5	Shah, S. P., Swartz, S. E. and Ouyang, "Fracture Mechanics of Concrete:	1995
	Applications to Concrete, Rock and other Quasi-brittle Materials", C., John	
	Wiley.	
6	Bazant, Z. P., and Planas, J., "Fracture and Size Effect in Concrete and Other	1997
	Quasi-brittle Materials", CRC Press.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-650 Course Title : Design of Bridge Substructures

2. Contact Hours : L: 3 T: 0 P: 2

3. Examination Duration (Hrs): Theory: 3 Practical: 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil

9. Objective: To introduce the behaviour and design of bridge substructures.

10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Hydraulic calculations related to bridge design	04
2.	Analysis and design of piers and pier caps	06
3.	Seismic restrainers	01
4.	Analysis and design of abutments	04
5.	Analysis and design of well foundations	15
6.	Analysis and design of pile foundations	12
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	Vijay Singh, "Wells and Cassions" Nem Chand & Sons.	1981
2.	S. Saram, "Analysis and Design of Substructures".	2012
3.	Ponnuswamy, "Bridge Engineering".	1986
4.	D. J. Victor, "Essentials of Bridge Engineering".	2001
5.	Rakshit, "Design and Construction of Highway Bridges".	2004

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-651 Course Title : Wind Engineering
- 2. Contact Hours : L: 3 T: 0 P: 2

3. Examination Duration (Hrs): Theory: 3 Practical: 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the theoretical and experimental approaches available to analyze the effect of wind loading on various wind sensitive structures
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1	Atmospheric Pressure and Gradient Wind, Wind Climate and Structure, Peak 3-sec,	07
	10 min and Hourly Mean Wind Speeds. Low Cycle Energy and Large Scale	
	Pressure Systems, Wind Energy and Turbulence, Spectral Distribution and	
	Boundary Layer (ABL) & its Characteristics.	
2	Aerodynamics of Bluff Bodies, Vortex Shedding and Associated Unsteady Along	07
	and Across Wind Forces. Peak Factor and Gust factor Estimation. Buffeting and	
	Ovalling, Galloping and Flutter. Extreme Winds, Correlation and Spectral Function.	
3	Random Vibration Theory, Auto Correlation Function, Power Spectral Density,	06
	Narrow and Wide Band Random Processes. Response of SDF in the Frequency	
	Domain to Random Excitation. Application to MDF Systems.	
4	Experimental Procedures for Response Studies. Wind Tunnel and its Salient	08
	Features, ABL Simulation. Basic Wind Tunnel Instrumentation for the	
	Measurement of Flow Parameters, Forces, Displacements and Strains. Use of	
	Statistical Methods for the Analysis of Measured Data and its Interpretation.	
	Analytical Procedures for Along Wind and Across Wind Forces.	
5	Wind Effects on Buildings, Chimneys, Towers and Bridges. Pressure Coefficients	08
	and Internal Pressures, Case Studies.	
6	Codal Provisions, Design Wind Velocities, Wind Resistant Design- Indian Codes	06
	and other International Codes of Practice.	
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1	E. Simiu and R.H. Scanlan, "Wind Effects on Structures", Wiley.	1996
2	E. Simiu and T. Miyata, "Design of Buildings and Bridges for Wind", Wiley.	2006
3	J.D. Holmes, "Wind Loading on Structures", F & FN Spon.	2001